Anisotropic Mesh Transformations and Optimal Error Control

نویسنده

  • R B Simpson
چکیده

Recently, research originating in several dierent applications has appeared on un-structured triangular meshes in which the vertex distribution is not locally uniform, i.e. anisotropic unstructured meshes. The techniques used have the common features that the distribution of triangle shapes for the mesh is controlled by specifying a symmetric tensor, and that the anisotropic mesh is the transform of an isotropic mesh. We discuss how these mechanisms arise in the theory of optimal error control, using simple model mesh generation problems, and review the related research in applications to computational uid dynamics, surface triangulation, and semiconductor simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 3D Goal-Oriented Anisotropic Mesh Adaptation Applied to Inviscid Flows in Aeronautics

This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a f...

متن کامل

An Interpolation Error Estimate on Anisotropic Meshes in Rn and Optimal Metrics for Mesh Refinement

In this paper, we extend the work in [W. Cao, Math. Comp., to appear] to functions of n dimensions. We measure the anisotropic behavior of higher-order derivative tensors by the “largest” (in certain sense) ellipse/ellipsoid contained in the level curve/surface of the polynomial for directional derivatives. Given the anisotropic measure for the interpolated functions, we derive an error estimat...

متن کامل

Numerische Simulation Auf Massiv Parallelen Rechnern Anisotropic Mesh Construction and Error Estimation in the Nite Element Method Preprint-reihe Des Chemnitzer Sfb 393

In an anisotropic adaptive nite element algorithm one usually needs an error estimator that yields the error size but also the stretching directions and stretching ratios of the elements of a (quasi) optimal anisotropic mesh. However the last two ingredients can not be extracted from any of the known anisotropic a posteriori error estimators. Therefore a heuristic approach is pursued here, name...

متن کامل

Optimal 3D Highly Anisotropic Mesh Adaptation Based on the Continuous Mesh Framework

This paper addresses classical issues that arise when applying anisotropic mesh adaptation to real-life 3D problems as the loss of anisotropy or the necessity to truncate the minimal size when discontinuities are present in the solution. These problematics are due to the complex interaction between the components involved in the adaptive loop: the flow solver, the error estimate and the mesh ge...

متن کامل

Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error

In the context of mesh adaptation, Riemannian metric spaces have been used to prescribe orientation, density and stretching of anisotropic meshes. But, such structures are only considered to compute lengths in adaptive mesh generators. In this article, a Riemannian metric space is shown to be more than a way to compute a length. It is proven to be a reliable continuous mesh model. In particular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992